GENERAL TECHNICAL DATA SUNTESI.

Syntesi® is an important milestone achieved by Metal Work, the result of thirty years' experience producing air-treatment units. It has been studied in minute detail to obtain the best possible performance in a reduced space and with limited weight. The capacity is much higher than that of other units of the same size.

This modular unit features a very simple yet effective system that requires no brackets, stay bolts or yoke for assembling the elements.

The basic version of Syntesi® incorporates numerous functions that are not provided or are only optional with traditional units. Examples are padlockable knobs, additional pneumatic ports on the front and back, flow options from left to right or vice versa, regulators with compensation system - which are accurate even when the upstream pressure changes, with rapid downstream pressure relief - full indelible marking, automatic condensate drain even in size 1, and 360° visual inspection of oil and condensate levels. The basic materials, technopolymer and nickel-plated brass have excellent corrosion resistance. An anti-corrosion version is available with stainless steel components (screws, plates) or Geomet®-reated ones (regulator springs).

	SIZE 1			SIZE 2				
	1/8"	1/4"	3/8"	3/8"	1/2"	3/4"	1"	
bar		15		,		13		
MPa		1.5				1.3		
psi		217			1	188		
	See catalogue of the various elements							
°C	from -10 to +50							
	The knobs of the regulators, filter regu			ators and standard	sectioning valves	can all be padlock	ed	
	1/8", front and rear, on all modules 1/4", front and rear, on all modules							
	No. 2 M4 screws No. 2 M5 screws							
	Ex II 3 GD c T5 T 100°C -20°C <ta<50°c< td=""></ta<50°c<>							
	MPa psi	bar MPa psi °C	1/8" 1/4" bar 15 MPa 1.5 psi 217 °C from -10 to +50 The knobs of the reg	bar 1/8" 1/4" 3/8" bar 15 MPa 1.5 psi 217 See catala °C from -10 to +50 The knobs of the regulators, filter regulators, f	bar MPa 1.5 See catalogue of the various °C from -10 to +50 The knobs of the regulators, filter regulators and standard Compressed air or other ine See catalogue of the various Flow options right to left or v 1/8", front and rear, on all modules No. 2 M4 screws	bar MPa 1.5 See catalogue of the various elements °C from -10 to +50 from -1 The knobs of the regulators, filter regulators and standard sectioning valves Compressed air or other inert gases See catalogue of the various elements Flow options right to left or vice versa 1/8", front and rear, on all modules No. 2 M4 screws No. 2 I	bar 1/8" 1/4" 3/8" 3/8" 1/2" 3/4" bar 15 13 MPa 1.5 1.3 psi 217 188 See catalogue of the various elements "C from -10 to +50 from -10 to +50 The knobs of the regulators, filter regulators and standard sectioning valves can all be padlocked Compressed air or other inert gases See catalogue of the various elements Flow options right to left or vice versa 1/8", front and rear, on all modules No. 2 M4 screws No. 2 M5 screws	

ANTI-CORROSION VERSION

Differences compared to the standard version:

- stainless steel screws
- stainless steel plate for R, FR, V3V knobs
- Geomet®-treated regulator spring and filter-regulator

FIXING TO FRONT PORTS

ROTARY BUSHINGS

LASER MARKING

Do not use a spanner for fixing taper threaded elements to the front ports. Mount by hand and apply a liquid sealant (not teflon®).

3/4" and 1" bushings in Size 2 rotate freely to facilitate assembly operations.

The following is marked indelibly on the body:

- Metal Work trademark
- Code
- Maximum pressure and temperature Degree of filtration or pressure range, where relevant
- Week and year of manufacture
- Atex category
- Made in Italy

MOUNTING OPTIONS

On the wall, using two screws

On a panel

Using knob bracket

Using a bracket

On a DIN EN50022 bar with the apposite adaptator

The various elements of Syntesia @ can be connected to the air feed and delivery circuit using pneumatic nickel brass or passivated aluminium ports ® and can be fixed together using nipples ©.

The nipples and ports are easy to remove by unscrewing the two front screws @. This solution has numerous advantages:

- Reduced overall dimensions.
- Free composition of multiple elements, without the need for brackets, stay bolts or yoke.
- The threads for the fittings are metallic, allowing high tightening torques, also for tapered threads.
- Maximum flexibility: a unit can be transformed at any time by adding an element or replacing a port with another one, e.g. 1/4" instead of 1/8".
- The air intake port can be the same or different from the outlet port, as desired.

Standard Syntesia ports are: 1/8", 1/4", 3/8" for size 1; 3/8", 1/2", 3/4", 1" for size 2.

It may be necessary to use a vice to insert the bushes into size 2.

The nipples have different functions:

- Nipple © joins two elements of the same size together.
- Size adaptor (€) can be used to connect an element in the Syntesi® 2 series with one in the Syntesi® 1 series.
- The 90° adaptor 🖲 can be used to connect two 90° angled elements. For example, it can help directing the regulator knob or the control knob of a sectioning valve towards the user.
- The two-way air intake @ is a simple and cost-effective system which, besides connecting two elements together, has 2 opposing threaded air intakes.

- The adaptor for Regtronic (H) can be used to fix the Regtronic 1/4" proportional valve to a Syntesi® size 1 element.

Additional ports (1). On the front and back of ALL Syntesi® elements there is a port (1/8" for size 1, 1/4" for size 2) that can be used for pressure gauges ©, pressure switches ® or, given the high flow rate, as additional air take-off ®. These ports are downstream of the element, so, for example, a regulator port can supply air at a set pressure or a filter port can supply filtered air (not valid for activated carbon filter and depurator).

Wall fixing. Only two through screws @ are needed. No bulky brackets or additional flanges are required. The bracket @ can be used to separate the unit from the fixing wall, e.g. to mount a fitting to the rear port.

Fixing on a DIN EN50022 bar. Can be done using the bracket kit ①.

Regulator fixing bracket @. Regulators and filter-regulators can also be fixed using a steel bracket @ that embraces the bell.

Padlockable knob ®. The knobs of regulators, filter-regulator and sectioning valves can all be padlocked. The steel plate is included in the supply. You can insert up to two 3 mm diameter padlocks To on size 1 and three padlocks on size 2. As an alternative, the sectioning valve can have a steel plate suitable for a single 6 mm diameter padlock.

Safety valve S. The unit can incorporate a series 70 SAFE AIR® safety valve.

SUNTESI: KEY TO CODES

KEY TO CODES S	INGLE ELEMEN	п			
56 SYNTESI	1 SIZE	1 THREADED INPUT CONNECTION	F ELEMENT	10 TYPE	1 THREADED OUTPUT CONNECTION
56 Syntesi 5X Syntesi anti-corrosion	1 Size 1 2 Size 2	0 Without bushing 1 1/8" port 2 1/4" port 3 3/8" port 0 Without bushing 3 3/8" port 4 1/2" port 5 3/4" port 6 1" port	F Filter D Depurator C Active carbon filter R Pressure regulator B Filter-regulator L Lubricator ● V Shut off valve ▲ A Progressive starter ▲ S Pressure switches P Air take-off	Varies from element to element	O Without bushing 1 1/8" port 2 1/4" port 3 3/8" port O Without bushing 3 3/8" port 4 1/2" port 5 3/4" port 6 1" port

- The anti-corrosion version of this element is only available with manual actuation.
- Not available in the anti-corrosion version.

KEY TO CODES UNIT COMPOSED OF TWO OR THREE ELEMENTS

56	1	1	٧	10	В	24	L	10	1
SYNTESI	SIZE	THREADED INPUT CONNECTION	ELEMENT 1	TYPE	ELEMENT 2	TYPE	ELEMENT 3	ТҮРЕ	THREADED OUTPUT CONNECTION
56 Syntesi 5X Syntesi anti-corrosion	1 Size 1 2 Size 2	1 1/8" port 2 1/4" port 3 3/8" port 3 3/8" port 4 1/2" port 5 3/4" port 6 1" port	F Filter D Depurator C Active carbon filter R Pressure regulator B Filter-regulator L Lubricator ● V Shut off valve A Progressive starter A S Pressure switches P Air Take-off	Varies from element to element	F Filter D Depurator C Active carbon filter R Pressure regulator B Filter- regulator L lubricator V Shut off valve A A Progressive starter A S Pressure switches P Air Take-off	Varies from element to element	F Filter D Depurator C Active carbon filter R Pressure regulator B Filter- regulator L Lubricator ● V Shut off valve A A Progressive starter A S Pressure switches P Air Take-of	Varies from element to element	1 1/8" port 2 1/4" port 3 3/8" port 3 3/8" port 4 1/2" port 5 3/4" port 6 1" port

- The anti-corrosion version of this element is only available with manual actuation. Not available in the anti-corrosion version.

SUNTESI: FILTER-REGULATOR

This device combines in a single unit the functions of filtration, condensate

separation and pressure regulation. It is made up of the same elements forming the filter and the regulator, so the performance and advantages are the same:

- Separation of condensate and larger liquid and solid particles by centrifugation.
- Three condensate drain options (RMSA, RA and SAC).
- 360° visually inspection of the condensate level, via transport
- · Rolling diaphragm regulator, allowing maximum precision and flow rate, and minimal friction.
- Compensation for upstream pressure changes.
- Pressure relief valve.
- Quick downstream pressure relief.
- Padlockable push-lock knob.
- Front and rear ports for pressure gauges, pressure switches or, considering the high flow rate, for use as additional filtered and regulated air take-off.

					•				
TECHNICAL DATA			FR SY1			FR S	Y2		
Threaded port Degree of filtration	рm	1/8″		3/8" 5 (yellow) - output 20 (white) - output 50 (blue) - output	air purity class	ISO8573-1: 4.7	7.4		1"
Max. inlet pressure	bar MPa		15 1.5	30 (blue) Oulput	un porny ciass	1: 1.	3 3		
Flow rate at 6.3 bar (0.63 MPa; 91 psi) ΔP 0.5 bar (0.05 MPa; 7 psi) (inlet pressure 10 bar) Flow rate at 6.3 bar (0.63 MPa; 91 psi) ΔP 1 bar (0.1 MPa; 14 psi) (inlet pressure 10 bar)	psi NI/min scfm NI/min scfm	500 18 1300 46	217 800 28 2000 71	2200 78 3000 106	3200 113 5800 205	4300 152 7200 255		5200 184 7400 262	
Relief valve flow rate at 6.3 bar (0.63 MPa; 91 psi) Min/max temperature at 10 bar; 1 MPa; 145 psi	NI/min scfm °C		70 2.5 From -10 to -	.50		3. From -1			
Full outflow with zero inlet pressure Padlockable knob Upstream pressure compensation	C		110111-1010		Included Included ed, via balance		0 10 130		
Weight Fluid	9	244	239	230	623 ed air or other i	596	592	1	580
Mounting position Additional air take-off, for pressure gauges or fittings Additional air take-off flow rate at 6.3 bar	NI/min		1/8", front and 500	rear	Vertical 1/4", front and rear 1400				
(0.63 MPa; 91 psi) ΔP 1 bar (0.1 MPa; 14 psi) Bowl capacity Condensate drain	scfm cm ³	DAY	18 30	nanual condensate	disabaran and	5) 7) مامونام مناسم ا	0		
Condensale drain		SAC: autom	A: automatic dra atic drain with c	ain with condensa ondensate dischar naximum input pi	te discharge, in ge. <mark>Operates b</mark>	dependent of pro y depression - r	essure and frequires var	low rate	r take-offs
Wall fixing screws Notes on use			No. 2 M4 scre pressure must a		ards. For increas	No. 2 Nosed sensitivity, us	15 screws e a pressure		
			wim c	On request vers					

COMPONENTS

- 1) Technopolymer adjusting knob
- ② Technopolymer bell
- 3 Steel adjusting spring (with Geomet® treatment for anti-corrosion version)
- Technopolymer flange
- Rolling diaphragm
- IN/OUT bushing made of OT58 nickel-plated brass or passivated aluminium for 3/4" - 1"
- 7 Technopolymer body
- ® OT58 brass valve, with NBR vulcanized gasket
- © Clear technopolymer bowl
 ® Galvanised steel plate for knob locking (stainless steel for anti-corrosion version)
- 11) OT58 brass adjusting screw
- 12 Technopolymer ring nut
- Technopolymer plate 13
- 14)
- Technopolymer rod Stainless steel valve spring
- O-ring NBR gaskets 16
- Drain (RMSA)
- ® Sintered HDPE filter cartridge
- 19 Technopolymer screen

FLOW CHARTS

FR Syntesi® SY1 1/8"

Regulated pressure 0.6 6 ~-C1 70 0.5 5 60 0.4 4 40 0.3 3 30 20 10 0,1 400 800 1000 1200 Flow rate

FR Syntesi® SY1 3/8"

FR Syntesi® SY1 1/4"

FR Syntesi® SY2 3/8"

= Pln 7 bar - POut 2.5 bar = Pln 7 bar - POut 4 bar C = P In 7 bar - P Out 6.3 barA1 = PIn10 bar - POut 2.5 bar B1 = Pln 10 bar - POut 4 bar C1 = Pln 10 bar - POut 6.3 bar

FR Syntesi® SY2 1/2"

FR Syntesi® **SY2** 3/4" - 1"

C = P In 7 bar - P Out 6.3 barA1 = P In 10 bar - P Out 2.5 bar B1 = P In 10 bar - P Out 4 bar C1 = P In 10 bar - P Out 6.3 bar

DIMENSIONS

		SIZE 1			SIZE 2				
H (threaded port)		1/8"	1/4"	3/8"	3/8"	1/2"	3/4"	1"	
Α	•	42			61				
A1		-	-	44	-	S	95	95	
В	RMSA		198			2	46		
	RA/SAC		202		250				
С			44			6	1		
CH			-		-	-	32	36	
D		51.5			70.5				
E			33.5		47.5				
F			25.8		38.2				
G		Hole for M4 screws			Hole for M5 screws				
1			16		22.5				
L			M30x1.5	i	M38x2				
M	RMSA		148		178				
	RA/SAC		152		182				
N	RMSA		122.2		139.8				
	RA/SAC		126.2		143.8				
0	RMSA	202		245					
	RA/SAC		206		249				
P (pressure or additi	gauge port	1/8″		1/4"					
takes-off									

NOTES

KEY TO CODES

56	1	1	В	24	1
SYNTESI	SIZE	THREADED INPUT CONNECTION	ELEMENT	DEGREE OF FILTRATION, TYPE OF CONDENSATE DRAIN AND SETTING RANGE	THREADED OUTPUT CONNECTION
56 Syntesi 5X Syntesi anti-corrosion	1 Size 1 2 Size 2	CONNECTION 0 Without bushing 1 1/8" port 2 1/4" port 3 3/8" port 0 Without bushing 3 3/8" port 4 1/2" port 5 3/4" port 6 1" port	B Filter-regulator	CONDENSATE DRAIN AND SETTING RANGE 10 5 μm, RMSA, 0 to 2 bar 20 20 μm, RMSA, 0 to 2 bar 30 50 μm, RASA, 0 to 2 bar 40 5 μm, RA, 0 to 2 bar 50 20 μm, RA, 0 to 2 bar 50 20 μm, RA, 0 to 2 bar 50 20 μm, RA, 0 to 2 bar 50 μm, SAC, 0 to 2 bar 21 20 μm, SAC, 0 to 2 bar 31 50 μm, SAC, 0 to 2 bar 11 5 μm, SAC, 0 to 2 bar 12 5 μm, RMSA, 0 to 4 bar 12 20 μm, RMSA, 0 to 4 bar 13 50 μm, RA, 0 to 4 bar 14 5 μm, RA, 0 to 4 bar 15 20 μm, RA, 0 to 4 bar 15 μm, SAC, 0 to 4 bar 13 5 μm, SAC, 0 to 4 bar 13 5 μm, SAC, 0 to 4 bar 14 5 μm, SAC, 0 to 4 bar 14 5 μm, SAC, 0 to 4 bar 20 μm, SAC, 0 to 4 bar 20 μm, RASA, 0 to 8 bar 24 20 μm, RA, 0 to 8 bar 25 μm, RA, 0 to 8 bar 26 μm, RA, 0 to 8 bar 50 μm, RA, 0 to 12 bar 50 μm, RASA, 0 to 12 bar 50 μm, RA, 0 to 12 bar 50 μm, SAC, 0 to 12 bar	CONNECTION 0 Without bushing 1 1/8" port 2 1/4" port 3 3/8" port 0 Without bushing 3 3/8" port 4 1/2" port 5 3/4" port 6 1" port

Not available in the anti-corrosion version.
 Anti-corrosion version available only in size 1.
 RMSA: drain with manual condensate discharge and automatic discharge at zero pressure.
 RA: automatic drain with condensate discharge, independent of pressure and flow rate.
 SAC: automatic drain with condensate discharge. Operates by depression – requires variable air take-offs.

n	п	-		-	-
N	ш	(8)	ш		N
ш	u	v	ш		•